메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2003년 학술대회 제2권
발행연도
2003.11
수록면
84 - 87 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes the enhanced RBF network, which arbitrates learning rate and momentum dynamically by using the fuzzy system, to arbitrate the connected weight effectively between the middle layer of RBF network and the output layer of RBF network. ART2 is applied to as the learning structure between the input layer and the middle layer and the proposed auto-turning method of arbitrating the learning rate as the method of arbitrating the connected weight between the middle layer and the output layer. The enhancement of proposed method in terms of learning speed and convergence is verified as a result of comparing it with the conventional delta-bar-delta algorithm and the RBF network on the basis of the ART2 to evaluate the efficiency of learning of the proposed method.

목차

Abstract
1. Introduction
2. Related Study
3. Enhanced RBF network
4. Experiment and analysis of the result
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-013676515