메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제27권 제1호
발행연도
2003.1
수록면
66 - 76 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The arbitrary V-notched crack problem is considered. The general expressions for the stress components on this problem are obtained as explicit series forms composed of independent unknown coefficients which are denoted by coefficients of eigenvector. For this results eigenvalue equation is performed first through introducing complex stress functions and applying the traction free boundary conditions. Next solving this equation. eigenvalues and corresponding eigenvectors are obtained respectively. and finally inserting these results into stress components, the general equations are obtained. These results are also shown to be applicable to the symmetric V-notched crack or straight crack. It can be shown that this solutions are composed of the linear combination of Mode Ⅰ and Mode Ⅱ solutions which are obtained from different characteristic equations, respectively. Through performing asymptotic analysis for stresses, the stress intensity factor is given as a closed form equipped with the unknown coefficients of eigenvector. In order to calculate the unknown coefficients, based on these general explicit equations, numerical programming using the overdetermined boundary collocation method which is algorithmed originally by Carpenter is also worked out. As this programming requires the input data, the commercial FE analysis for stresses is performed. From this study, for some V-notched problems, unknown coefficients can be calculated numerically and also fracture parameters are determined.

목차

Abstract

1.서론

2.문제의 수식화

3.복소수 고유치에 대한 응력 일반식

4.실수 고유치에 대한 응력 일반식

5.고유벡터계수와 파괴변수의 결정

6.결론

후기

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-014038177