메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology KSME International Journal Vol.16 No.11
발행연도
2002.11
수록면
1,359 - 1,366 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the backpropagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

목차

Abstract

1.Introduction

2.Training Algorithm of Neural Network

3.Finite Elements Analysis

4.Neural Network Training

5.Prediction of Eccentric Error

6.Conclusions

Acknowledgment

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-014049809