메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management 정보기술과 데이타베이스 저널 제11권 제1호
발행연도
2004.3
수록면
117 - 135 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since human decision making behavior is likely to follow nonlinear strategy, it is conjectured that the human decision making behavior can be modeled better by nonlinear models than by linear models. All that linear models can do is to approximate rather than model the decision behavior. This study attempts to test this conjecture by analyzing human decision making behavior and combining the results of the analysis with predictive performance of both linear models and nonlinear models. In this way, this study can examine the relationship between the predictive performance of models and the existence of valid nonlinear strategy in decision making behavior. This study finds that the existence of nonlinear strategy in decision making behavior is highly correlated with the validity of the decision (or the human experts). The second finding concerns the significant correlations between the model performance and the existence of valid nonlinear strategy which is detected by Lens Model. The third finding is that as stronger the valid nonlinear strategy becomes, the better nonlinear models predict significantly than linear models. The results of this study bring an important concept, validity of nonlinear strategy, to modeling human experts. The inclusion of the concept indicates that the prior analysis of human judgement may lead to the selection of proper modeling algorithm. In addition, Lens Model Analysis is proved to be useful in examining the valid nonlinearity in human decision behavior.

목차

Abstract

1. 서론

2. 연구배경

3. 연구방법

4. 분석과 결과해석

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-005-014267283