메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
OLAP(On-Line Analytical Processing)은 데이터 웨어하우스 내의 방대한 양의 데이터에 대해 사용자와의 상호 작용이 가능하도록 질의에 대하여 빠른 응답성능을 보장해야 한다. 이를 위해 OLAP 시스템은 데이터에 대한 다량의 다차원 집계 연산을 수행해야 하기 때문에, 일반적으로 사전 연산 결과를 저장하여 직접적인 집계 연산을 줄임으로써 응답 성능을 높이는 방법을 사용하고 있다. OLAP 다차원 데이터의 희박성은 이러한 사전 연산 시 데 ... 전체 초록 보기

목차

요약

1. 서론

2. 관련 연구

3. OLAP 시스템의 희박 데이터 패턴 분류 및 희박 데이터 생성기

4. 성능 평가

5. 결론

6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017762751