메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (8)

초록· 키워드

오류제보하기
슈퍼스칼라 프로세서에서 값 예측(value prediction)은 한 명령의 결과를 미리 예측하여 명령들 간의 데이타 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim, ILP)을 이용하는 기법이다. 값 예측기(value predictor)는 명령어 페치 시에 예측 테이블을 참조(lookup)하여 값을 예측하고, 명령의 실행 후 판명된 예측 결과에 따라 테이블을 갱신(update)하여 이 후의 참조를 대비한다. 그러나, 최근의 값 예측기는 프로세서의 명령 페치 및 이슈율이 커짐에 따라 예측 테이블이 갱신되기 전에 다시 같은 명령이 페치되어 갱신되지 못한 낡은 값(stale value)으로 예측되는 경우가 빈번히 발생하여 예측기의 성능이 저하되는 경향이 있다.
본 논문에서는 이러한 성능저하를 줄이기 위해 명령의 결과가 나올 때까지 기다리지 않고 테이블 값을 모험적으로 갱신(speculative update)하는 스트라이드 값 예측기(stride value predictor)를 제안한다. 제안 된 방식의 타당성을 검증하기 위해 SimpleScalar 시뮬레이터 상에 제안된 예측기를 구현하여 SPECint95 벤치마크를 시뮬레이션하고 제안된 모험적 갱신의 스트라이드 예측기가 기존의 스트라이드 예측기 보다 성능이 향상됨을 보인다.

목차

요약

Abstract

1. 서론

2. 이론적 배경

3. 예측 테이블 갱신 지연

4. 모험적 갱신 스트라이드 예측기

5. 성능 측정 및 분석

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017817639