메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 시스템 및 이론 정보과학회논문지 : 시스템 및 이론 제27권 제12호
발행연도
2000.12
수록면
988 - 995 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
각 모듈들의 위치가 배치 알고리즘에 의해 결정된 후에도 모듈들을 종축 또는 횡축을 중심으로 뒤집거나 회전시킴으로써 회로의 효율성과 연결성을 향상시킬 수 있다. 고집적 회로설계의 한 단계인 모듈 방향 결정 문제는 모듈간에 연결된 선의 길이의 합이 최소가 되도록 각 모듈의 방향을 결정하는 문제이다. 최근에 평균장 어닐링 방법이 조합적 최적화 문제에 사용되어 좋은 결과를 보여 주고 있다. 평균장 어닐링은 신경회로망의 빠른 수렴 특성과 시뮬레이티드 어닐링의 우수한 해를 생성하는 특성이 결합된 방법이다.
본 논문에서는 정규화된 평균장 어닐링을 사용해서 모듈 방향 결정 문제를 해결하였고 실험을 통해 기존의 Hopfield 네트워크 방법과 시뮬레이티드 어닐링과 그 결과를 비교하였다. 시뮬레이티드 어닐링, 정규화된 평균장 어닐링과 Hopfield 네트워크의 총 길이 감소율은 각각 19.86%, 19.85%, 19.03%였으며, 정규화된 평균장 어닐링의 실행 시간은 Hopfield 네트워크보다는 1.1배, 시뮬레이티드 어닐링보다는 11.4배 정도 빨랐다.

목차

요약

Abstract

1. 서론

2. 평균장 어닐링 알고리즘

3. Hopfield 네트워크

4. 시뮬레이티드 어닐링

5. 실험 결과 비교 및 분석

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017823275