메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제30권 제5호
발행연도
2003.10
수록면
451 - 463 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 시공간 데이타에 대한 OLAP연산 효율을 증가시키기 위한 여러 가지 연구들이 행하여지고 있다. 이들 연구의 대부분은 다중트리구조에 기반하고 있다. 다중트리구조는 공간차원을 색인하기 위한 하나의 R-tree와 시간차원을 색인하기 위한 다수의 B-tree로 이루어져 있다. 하지만, 이러한 다중트리구조는 높은 유지비용과 불충분한 질의 처리 효율로 인해 현실적으로 시공간 OLAP연산에 적용하기에는 어려운 점이 있다.
본 논문에서는 이러한 문제를 근본적으로 개선하기 위한 접근 방법으로서 힐버트큐브(Hilbert Cube, H-Cube)를 제안하고 있다. H-Cube는 집계질의(aggregation query) 처리 효율을 높이기 위해 힐버트 곡선을 이용하여 셀들에게 완전순서(total-order)를 부여하고 있으며, 아울러 전통적인 누적합(prefix-sum) 기법을 함께 적용하고 있다. H-Cube는 대상공간을 일정한 크기의 셀로 나누고 그 셀들을 힐버트 값 순서로 저장한다. 이러한 셀들이 시간순서로 모여 큐브형태를 이루게 된다. 또한 H-Cube는 시간의 흐름에 따라 변화되는 지역적인 데이타 편중에 대처하기 위해 적응적으로 셀을 정제한다. H-Cube는 정적인 공간 차원에서 움직이는 점 객체에 초점을 두고 있는 적응적이며, 완전순서화되어 있으며, 또한 누적합을 이용한 셀 기반의 색인구조이다. 본 논문에서는 H-Cube의 성능 평가를 위해서 다양한 실험을 하였으며, 그 결과로서 유지비용과 질의 처리 효율성면 모두에서 다중트리구조보다 높은 성능 향상이 있음을 보인다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 힐버트큐브(H-Cube)

4. 성능 평가

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017860296