메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
디지털 형태의 문서가 널리 퍼지고 끊임없이 증가함에 따라 이를 자동으로 가공하고 처리하는 문서 자동분류의 중요성이 널리 인식되고 있다. 최근의 문서 자동분류는 k-최근접 이웃, 결정트리, Support Vector Machine, 신경망 등의 다양한 기계학습 기법을 이용하여 연구되고 있다. 그러나 많은 연구가 잘 조직된 데이타 집합을 이용하여 연구결과를 보여주고 있으며, 실제 문제에의 응용성에는 큰 비중을 두지 않고 있다. 본 논문에서는 문서분류의 응용시스템인 질의 자동응답시스템에 적용할 수 있는 다중 분류기 결합 방법을 제안하고 실제 전자우편 문서의 분류문제를 해결한다. 첫째로, 다중신경망을 이용한 문서분류를 제안한다. 제안한 방법은 최대값 결합, 신경망 결합을 통해 성능의 향상을 가져온다. 둘째로, 여러 분류기의 결합을 통해 문서분류의 성능을 개선한다. 본 논문에서는 투표 결합방법, Borda 결합, 신경망 결합방법 등을 적용하여 여러 분류기의 결합을 수행하였다. 실용 가능성을 분석한 실험결과 90%이상의 정확율을 보여 제안한 방법이 실용적일 수 있음을 알 수 있었다.

목차

요약

Abstract

1. 서론

2. 배경

3. 다중신경망을 이용한 문서분류

4. 분류기 결합을 통한 문서분류

5. 실험결과

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862861