메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
침입탐지 시스템은 정밀성과 적응성, 그리고 확장성을 필요로 한다. 이와 같은 조건을 포함하면서 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 우리는 더욱 구조적이며 지능적인 IDS(Intrusion Detection Systems) 개발의 필요성이 요구 되고 있다. 본 연구는 데이터 마이닝(Data mining)을 통해 입 패턴, 즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝기법중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였으며, 사용된 데이터는 KDD데이터이다. 이 데이터를 중심으로 침입 규칙을 생성하였다. 규칙생성에 ... 전체 초록 보기

목차

요약

1. 서론

2. 유전자알고리즘(Genetic Algorithms)

3. 침입탐지 시스템(Intrusion Detection Systems)

4. 시스템의 구현 및 실험

5. 결론 및 향후 연구 방향

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017876610