메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대상 물체의 3차원 모델을 구축하기 위해서는 여러 시점에서 측정된 거리정보 데이타들을 하나의 좌표계로 통합하는 정합(registration) 과정이 필수적이다. 3차원 데이타의 정합을 위해 가장 널리 사 용되는 ICP(Iterative Closest Point) 알고리즘은 거리정보 데이타 간에 겹치는 영역 또는 일치점 등에 대한 사전 정보가 필요하다. 본 논문에서는 임의의 시점에서 측정된 데이타를 반복적인 방법에 의해 자동으로 정합하는 개선된 ICP 방법이 제안된다. 3차원 데이타가 거리정보 영상으로 맺히는 관계를 나타내는 센서 사영조건(projection constraint), 데이타의 공분산(covariance) 행렬, 교차(cross) 사영 들을 이용하여 정합과정을 자동화하였으며, 유저의 개입이나 3차원 기계 보조 장치 등을 사용하는 별도의 초기값 측정없이 3차원 모델을 정확하게 구성할 수 있다. 다양한 거리정보 데이타에 대한 실험을 통해 제안된 방법의 우수한 성능을 확인하였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 센서의 사영행렬과 공분산 행렬

4. 제안된 방법

5. 실험 결과

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017932497