메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제1권 제1호(창간호)
발행연도
2001.12
수록면
8 - 14 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 의료영상에서 특정 장기를 추출하여 질환부위를 인식하는 알고리즘을 제안한다. 의료영상이 추출되어진 장기 부위에서 질환을 인식하기 위하여 단일 신경회로망을 이용하면 신경회로망의 학습 능력과 일반화능력이 한정적이므로 성능개선에 많은 문제가 있다. 따라서 추출된 장기로부터 질환부위를 인식하는 것은 신경회로망을 복합적인 방법, 즉 RBF (Radial Basis Function), BP (Back Propagation)로 구성하여 단일 신경회로망의 단점을 극복하였다. 본 논문에서 제안하는 알고리즘은 입력의료영상의 다양한 형태 변화에 적응력이 뛰어남을 실험 결과로 알 수 있었다. 그리고, 전체 알고리즘의 수행시간이 장기추출 알고리즘을 포함하여 일반적으로 10초 이내에 수행됨을 실험 결과 알 수 있었다. 제안된 알고리즘은 실시간으로 의료영상의 질환부위를 인식하여 판별 자동화를 통해 원격의료에 사용되어 질 수 있다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 의료영상의 특징

Ⅲ. 의료영상의 특징 추출

Ⅳ. 신경회로망의 구성

Ⅴ. 실험 및 고찰

Ⅵ. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-015333667