메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제33권 제2호
발행연도
2006.4
수록면
214 - 223 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 시간에 따른 대량의 공간 객체들의 효과적인 저장과 처리의 필요성이 요구되면서 시공간 데이타베이스에 대한 필요성이 증가하였다. 이러한 시공간 데이타베이스에서 효과적인 질의 처리를 위하여 여러 가지 질의 최적화 기법이 연구되었고 그중 질의의 근사적인 결과를 계산하는 선택도 추정 기법이 활발하게 연구되었다. 선택도 추정 기법에는 샘플링 기반 기법, 히스토그램 기반 기법, 웨이블릿 기반 기법 등이 있고 그중 히스토그램 기법은 현재 상용 데이타베이스에서 널리 사용되고 있다. 하지만 지금까지의 시공간 질의 최적화 연구는 이동 객체의 미래 위치에 대한 선택도 추정에 치중되어 왔다. 본 논문에서는 과거의 시공간 데이타의 질의 최적화를 위하여 새로운 히스토그램인 T-Minskew의 구축 방법을 제안한다. 또한 T-Minskew를 이용한 효과적인 선택도 추정 기법을 제안하고 임계치 기법을 이용한 히스토그램의 효과적인 유지 기법을 통해 잦은 히스토그램 재구축을 방지하고 작은 추정 오류율을 유지하는 방법을 제안한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. T-Minskew 히스토그램
4. 실험 평가
5. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015536044