메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2006 가을 학술발표논문집 제33권 제2호(B)
발행연도
2006.10
수록면
250 - 253 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 들어 음원 협회의 항소로 인해 음악 파일을 무료로 다운 받을 수 없게 되었다. 이로 인해, 유료음악 사이트의 사용이 증가되었고, 수익성이 커지고 있다. 하지만 수요가 커진 것에 비해, 대부분의 음악 사이트들의 서비스는 음악 메일이나 휴대폰 전송 등에 그치고 있다. 따라서 사용자를 유치하기 위한 전략으로 추천시스템을 제안하고자 한다. 그 방법으로, 본 논문에서는 음악의 파형 변화를 분석하고, 사용자가 다운로드했던 파일의 리스트를 통하여 사용자 맞춤형 추천 시스템을 벡터 유사도를 통하여 구현하고자 한다. 음악에 대한 성분은 파형을 통하여 진폭과 진동수에 대한 특징 벡터를 추출한다. 그리고 사용자의 다운로드 리스트에 누적시킨다. 위의 두 절차를 통해 사용자의 리스트를 분석하여 비슷한 성분의 음악을 검색한다. 실험을 위해 사용되는 음악 성분에 대한 내용은 수치적인 데이터를 기반하고 있기 때문에 자동화가 용이했고, 빠른 연산 시간과 유동적인 검색 범위를 가질 수 있었다.

목차

요약
1. 서론
2. 관련 연구
3. 제안된 추천 시스템 방법
4. 문제점 및 해결안
5. 실험결과
6. 결론 및 향후 과제
7. 참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017397870