메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 SP編 第43卷 第6號
발행연도
2006.11
수록면
28 - 35 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
통계적 데이터를 이용하여 모양 변이가 가능한 능동모양모델(Active Shape Model, ASM)은 이차원 영상의 분할 및 인식에 성공적으로 사용되고 있다. 삼차원 모델 기반 기법은 객체 경계의 인식 및 묘사(delineating)를 위한 더욱 현실적인 모양 억제력(constraint)을 갖는다는 점에서 이차원 모델 기반 기법에 비해 좋은 결과를 가져온다. 그러나 삼차원 모델 기반 기법을 위해서는 분할된 객체들의 집합인 훈련(training) 데이터로부터 삼차원 모양모델을 생성하는 것이 가장 중요하고 필수적인 단계이며, 현재까지도 커다란 도전 과제로 남아있다. 삼차원 모양모델 생성에서 가장 중요한 단계는 포인트 분산모델(PDM)을 생성하는 것이다. PDM 생성을 위해서는 상응하는 특징점(landmark)을 모든 훈련 데이터의 대응하는 위치에서 선택해야 한다. 그러나 현재까지 많이 사용되는 특징점의 수동 선택 기법은 시간이 많이 소비되며, 많은 오류를 발생한다. 본 논문에서는 삼차원 통계적 모양모델의 생성을 위한 새로운 자동 기법을 제안한다. 주어진 삼차원 훈련 모양 데이터에서, 삼차원 모델은 다음 방법에 의해 생성된다. 1) 훈련 모양 데이터의 거리 변환(distance transform)으로부터 평균(mean) 모양 생성, 2) 평균 모양에서 자동적으로 특징점을 선택하기 위한 사면체(tetrahedron) 기법 사용, 3) 거리 표식(distance labeling) 기법을 통한 각 훈련 모양에서 특징점의 전파(propagating). 본 논문에서는 50명의 복부 CT 영상으로부터 간(liver)을 위한 삼차원 모델을 생성하고, 평가를 위해 정확성과 밀집도(compactness)를 조사한다. 기존의 삼차원 모델 생성 기법들은 객체의 모양과 기하학적 및 위상학적으로 심각한 제한을 갖지만, 본 논문에서 제안한 기법은 위와 같은 제한 없이 어느 데이터 집합에도 적용할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안한 알고리듬
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017550271