메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2006년 추계학술대회 논문집
발행연도
2006.11
수록면
413 - 416 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
신제품이나 서비스의 수요 예측을 Bass 확산모형을 토대로 수행할 때의 가장 큰 문제점은 모형의 파라미터 추정에 필요한 데이터가 충분치 않다는 것이다. 따라서 Bass 확산 모형의 핵심적인 두 파라미터인 혁신 계수(p)와 모방 계수(q)의 추정을 시도할 때, 어느 정도의 데이터 개수가 요구되는 지를 파악하는 것은 매우 현실적인 중요성을 갖는 문제이다.
이제까지의 연구는 주로 기존의 판매 데이터를 토대로 Bass 모형의 파라미터를 추정할 때, 생기는 다양한 문제점 파악에 집중되었다. 시뮬레이션의 경우는 Bass 모형에 랜덤 오차를 추가하여 실시하였다. 이 경우 데이터 개수가 계수추정에 미치는 영향은 도출되나 각 계수별 민감도 분석이 제대로 이루어지지 못하는 한계를 가지고 있다. 따라서 본 논문에서는 시뮬레이션에서 예측치를 발생시킬 때 랜덤 오차 대신, 혁신 계수와 확산 계수의 변동을 주는 방법을 도입한다. 결과는 다음과 같다. 첫째, p 변동보다는 q 변동이 예측치의 오차에 대해 보다 중요하다. 둘째, 오차가 잠재 수요의 30%이하로 떨어지기 위해서는 수요가 최대로 도달하는 시점이 t<SUP>*</SUP>일 경우, t<SUP>*</SUP>+1까지 데이터가 요구된다.

목차

Abstract
1. 서론
2. 연구배경
3. 시뮬레이션 방법
4. 민감도 분석
5. 결론 및 추후연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017586311