메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국정보기술학회 Proceedings of KIIT Conference 2006년도 하계종합학술발표논문집
발행연도
2006.6
수록면
135 - 140 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Conventional caption extraction methods use the difference between frames or color segmentation methods from the whole image. Because these methods depend heavily onheuristics, we should have a priori knowledge of the captions to be extracted. Also they are difficult to implement. In this paper, we propose a method that uses little heuristics and simplified algorithm. We use topographical features of characters to extract the character points and use KMST(Kruskal minimum spanning tree) to extract the candidate regions for captions. Character regions are determined by testing several conditions andverifying those candidate regions. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is 98.2%. And then we can see the results that caption area in complex images is well extracted.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Caption segmentation using KMST
Ⅲ. Experiments and Results
Ⅳ. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-566-016510352