메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국대기환경학회 한국대기환경학회지(국문) 한국대기환경학회지 제23권 제1호
발행연도
2007.2
수록면
110 - 124 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the control efficiency of odorous compounds was measured from diverse control process units of 14 individual companies located within the Ban-Wall industrial complex of Ansan city, Korea (January to July 2005). To quantify the control efficiency levels of major odorous compounds, we collected odor samples from both the front and rear side of 17 control process units (N=17×2=34). If the control efficiency is compared for each of 32 compounds between different process units, wet scrubber (WS) was found to be the most effective unit in terms of the sum of pollutants showing the positive control signals. Although the WS system shows generally a good control pattern for VOC, it is not the case for most index odorous pollutants; only 3 out of 12 index compounds were found to show positive control efficiencies. The results of the study also indicated that the control efficiency differ greatly between different industrial sectors and/or control process types. In the case of leather industry, carbonyl compounds were found to exhibit the highest control efficiency with its values varying from 19 to 90%. On the other hand, in the case of metal production sector, VOC recorded the maximum control efficiency with values varying from 18 to 79%. According to this study, most air pollution control facilities operated in most companies show fairly poor control efficiencies for most malodor compounds. Hence, to obtain best control efficiency of odorous pollutant emission, acquisition of better information on source characteristics and establishment of effective control technologies are highly demanding.

목차

Abstract
1. 서론
2. 연구 내용 및 방법
3. 결과 및 토론
4. 결론
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-539-016527812