메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (10)

초록· 키워드

오류제보하기
본 논문에서는 GF(2<SUP>m</SUP>)상의 고속 타원곡선 암호 프로세서를 제안한다. 제안한 암호 프로세서는 타원곡선 정수 곱셈을 위해 Lopez-Dahab Montgomery 알고리즘을 채택하고, GF(2<SUP>m</SUP>)상의 산술 연산을 위해 가우시안 정규 기저(Gaussian Normal Basis: GNB)를 이용한다. 본 논문에서 구현한 타원곡선 암호프로세서는 m=163을 선택하였으며 NIST(National Institute of Standard and Technology)에서 권고하는 5개의 GF(2<SUP>m</SUP>) 필드 크기 중에서 가장 작은 값으로 GNB 타입 4가 존재한다. 제안한 타원곡선 암호 프로세서는 Host Interface, Data Memory, Instruction Memory, Control로 구성되어 있으며 Xilinx XCV2000E FPGA칩을 이용하여 구현한다. FPGA 구현결과 제안된 타원곡선 암호 프로세서는 기존의 연구결과에 비해 속도에서 약 2.6배의 성능 향상을 보이며 훨씬 낮은 하드웨어 복잡도를 가진다.

목차

요약
Abstract
1. 서론
2. 수학적 배경
3. GNB를 이용한 GF(2m)상의 워드-레벨 곱셈기
4. GF(2m)상의 ECC 프로세서 설계
5. FPGA 구현 및 성능분석
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016603708