메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.7
발행연도
2007.7
수록면
997 - 1,007 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper investigates the performance of a nonlinear damage detection method using sensitivity enhancing control (SEC). Damage nonlinearity due to the cyclic behavior of crack breathing could provide valuable evidence of structural damage without information of the structure’s original healthy condition. Not having such information is considered a major challenge in vibration-based damage detection. In this study, two different categories of damage detection methods are investigated: frequency and time-domain techniques focusing on the benefit of SEC for breathing-type nonlinear damage in a structure. Numerical simulations using a cantilevered beam and spring-mass-damper system demonstrated that the level of nonlinear dynamic behavior heavily depends on the closed-loop pole placement through feedback control. According to SEC theory, the characteristic of the feedback gain defines the sensitivity of modal frequency to the change of stiffness or mass of the system. The sensitivity enhancement by properly designed closedloop pole location more visually clarifies the evidence of crack nonlinearity than the open-loop case where no sensitivity is enhanced. A damage detection filter that uses time series data could directly benefit from implementing SEC. The amplitude of damage-evident error signal of the closed-loop case significantly increases more than that of the open-loop case if feedback control or SEC properly modifies the dynamics of the system.

목차

Abstract
1. Introduction
2. Description of breathing crack
3. Sensitivity Enhancing Control (SEC)
4. Implementing SEC for breathing crack simulation
5. Conclusions
Acknowledgment
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016767133