메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지금까지 질의 점을 중심으로 최근접 객체(Nearest Neighbor : NN)를 찾는 다양한 연구가 진행되었다. 하지만 이 방법은 질의 점과 객체의 거리만을 고려하기 때문에 질의 점을 둘러싸고 있는 객체들을 찾을 수 없다는 문제점이 있다. 이것을 해결하기 위해서 제안 된 것이 최근접 주변객체(Nearest Surrounder : NS) 질의 처리 이다. 최근접 주변 객체는 질의 점을 둘러싸고 있으면서 가장 가까운 객체들을 찾는 것에 대한 연구이다. 기존의 NS를 찾는 방법은 객체 인덱싱을 위하여 R-tree를 사용하며, 질의 점과 최소경계사각형(minimum bounding rectangle : MBR)이 이루는 각의 범위를 계산한다. 계산 수행 결과 각 MBR들이 이루는 각의 범위가 겹치는 부분이 발생하면 해당 각 범위 내에서 질의 점으로부터 최소거리에 있는 MBR을 선택해야 하므로 범위별 질의 점과 MBR들의 최대 최소 거리를 구해야 한다. 이러한 범위별 계산과정은 계산 비용을 높이는 단점이 있다. 따라서 본 논문에서는 NS를 필요로 하는 영역에서 각 범위별 겹쳐지는 MBR들의 꼭지점 좌표만을 비교한다. 이것은 기존 연구에서 계산 비용을 높이는 공통 각 계산 절차를 개선하고, 최대 최소 거리 계산 수행은 생략하여 NS를 찾는다. 제안 기법을 위해 논문에서 사용하는 각 알고리즘은 이전 연구보다 나은 계산비용 절감 효과를 가져 올 수 있다.

목차

요약
1. 서론
2. 기존 연구
3. 제안 기법
4. 결론 및 향후 과제
5. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016768366