메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행 시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.

목차

요약
1. 서론
2. 관련연구
3. 시간 개념 계층과 공간 개념 계층
4. 이동 객체의 시간 및 공간 속성의 일반화
5. 결론 및 향후 연구과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016768422