메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Bioinformatics의 목표는 생물학적인 질의를 해결하는 것과 생물학자들이 수집된 데이터를 분석하고 검색을 하여 생물학자들이 정확한 일을 수행하는 것이다. 인터넷은 여러 조사 그룹의 데이터베이스에 동시에 접근가능한 수단을 제공했으나 이러한 분산 환경에서 많은 양의 데이터는 전송 시의 시간 지연 문제와 최종 검색시의 느린 검색 속도 문제를 나타낸다. 데이터 클러스터링은 데이터의 검색시 이러한 문제점을 해결하기 위하여 이용될 수 있는 방법이지만 단순 적용시에는 데이터의 양에 비례하는 실행 시간이 또다른 문제를 발생시킨다. 본 논문에서는 바이오데이터의 효율적인 클러스터링을 위한 개선된 분산 클러스터링 시나리오와 이를 위해 수정된 K-means 알고리즘을 제시한다. 최종 실험 결과는 20% 이상 향상된 실행 속도를 보여준다.

목차

요약
1. 서론
2. 배경
3. 분산환경하에서 대용량의 bioinformatics 데이터의 통합과 클러스터링
4. 평가
5. 결론
6. 참고자료

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016827588