메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
RacerPro, Pellet 등 지금까지의 전형적인 추론 시스템들은 주로 Tableaux Algorithm 기반의 추론 시스템으로 Tableaux Algorithm의 특성상 대용량 ABox 추론에서 문제점을 나타낸다. 이를 해결하기 위한 연구로 Tableaux Algorithm 기반에 DBMS를 함께 사용한 영국 Manchester 대학의 Instance Store와 Disjunctive Datalog Approach를 사용한 독일 Karlsruhe 대학의 KAON2가 있다. 현재 추론 시스템들에 대한 벤치마크 실험은 대부분 Tableaux Algorithm 기반의 TBox 추론 위주이며 ABox 추론에 대한 평가는 거의 진행되지 않았다. 특히 최근 이슈로 부각된 (대용량 ABox 추론을 위한 추론 시스템)의 특성별 벤치마크 실험은 거의 보고되지 않았다. 이에 본 논문에서는 각 추론엔진들의 이론적 배경을 근간으로 전형적 추론엔진들과 최근 이슈에 따른 대용량 ABox를 위한 추론엔진들을 상호 비교를 통해 살펴보며 특히, 대용량 ABox 처리를 위한 추론엔진인 Manchester 대학의 Instance Store와 Karlsruhe 대학의 KAON2를 LUBM을 통하여 분석 평가함으로 사용자의 요구에 따른 대용량 ABox 추론엔진을 제시한다. 평가방법에서는 LUBM(Lehigh University BenchMark)에 대한 소개와 이를 이용한 벤치마크 실험 방법 및 평가 시스템에 대하여 소개한다. 본 논문은 결론을 통해 실험 결과와 각 추론엔진의 사용 Algorithm 특성을 기초로 다양한 환경에서의 대용량 ABox 처리에 적합한 추론엔진을 제시한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 서술논리 및 추론 시스템 알고리즘
4. 대용량 ABox 추론을 위한 시스템
5. LUBM 평가 방법에 따른 실험 및 결과
6. 결론 및 향후 연구
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016859506