메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 창립 60주년 기념 추계학술대회 강연 및 논문 초록집
발행연도
2005.11
수록면
351 - 356 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An experimental study was conducted to investigate the heat transfer and pressure drop of a rectangular channel with the dimpled and/or protruded walls. And the effects of complex geometries of dimple and protrusion on heat transfer and pressure drop were investigated. In the present study, three different roughened surfaces of dimpled, protruded and complex(dimple-protrusion) surface were tested. The dimples/protrusions were installed at both top and bottom walls of the rectangular duct. The dimple depth is 0.25 times dimple diameter(D) and the protrusion height is also 0.25D. The dimple or protrusion has staggered array pattern, and the complex case has the pattern of repeat of the rows of dimples and protrusions. The local heat transfer coefficients on the dimpled/protruded walls were measured using a transient TLC(Thermocromic Liquid Crystal) technique. The friction factors of the rectangular channel with dimples/protrusions were obtained using pressure taps installed at the channel side wall. And the performance factors, which indicate the enhancement levels by both considerations of heat transfer enhancements and pressure loss increases were evaluated. As a result, high heat transfer region appeared at the rear side of the dimple due to the increased flow mixing on the dimpled surface. For the protruded surface, heat transfer was enhanced on the front side of the protrusion by the impingement effects of the flow induced by the horseshoe vortices. In case of complex geometry, dimple-protrusion, the compound effects of the dimple and protrusion occurred. The protrusion case showed the highest heat transfer enhancement among test cases. However, pressure loss increased. For the performance factor, the dimple case shows the highest performance factor among tested cases due to the slightly low pressure drop increase.

목차

Abstract
1. 서론
2. 실험장치 및 방법
3. 실험결과 및 고찰
4. 결론
후기
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016011567