메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 창립 60주년 기념 춘계학술대회 강연 및 논문 초록집
발행연도
2005.5
수록면
1,828 - 1,833 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A simulation model for multi-physics such as structural analysis, crash analysis and dynamic analysis has been widely used in practical engineering design in order to predict responses numerically. In spite of the usefulness of the simulation model, it is often expensive and time consuming as the simulation model becomes complicate to achieve reliable results. Therefore, it cannot be adequate for the high-fidelity simulation model to be directly applied in optimization process. To resolve the difficulty, the high fidelity simulation model can be replaced by an approximate model, the so-called metamodel. Varieties of meta-modeling techniques have been developed such as response surface model, kriging model, and radial basis function. Recently kriging model has been widely used in the DACE(Design and Analysis of Computer Experiment) because it can approximate nonlinear response very well. Since DACE has no random errors or measurement errors contrast to classical design of experiment, space filling experimental design that distributes design points uniformly over total design space should be employed as a sampling method. In this paper, we examine the maximum entropy experimental design that reveals the space filling strategy. Gaussian and exponential correlation functions are adopted to define the entropy criteria in the maximum entropy experimental design. The influence of these two correlation functions on space filling design and their model parameters are investigated. Based on the exploration of numerous numerical tests, enhanced maximum entropy experimental design is suggested.

목차

Abstract
1. 서론
2. 크리깅 모델
3. 충진 실험계획법
4. 최대 엔트로피 실험계획법
5. 예제
6. 결론
후기
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016054722