메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences Journal of the Korean Meteorological Society Vol.43 No.3
발행연도
2007.8
수록면
305 - 320 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Meteorological Research Institute (METRI) multi model ensemble system for seasonal prediction has been established with four different climate models. Multi model hindcast ensemble experiment from 1979 to 2002 by using the same initial and boundary condition is performed for winter season. To evaluate seasonal predictability of linear multi model ensemble forecasts compared with each participating model, we have used quantitative verification methods as mean square error and skill score using climate as a control forecast. Geopotential height at the 500 hPa level, temperature at the 850 hPa level, and precipitation are used as verification variables with both time and space domains. NCEP/NCAR reanalysis and CMAP precipitation data are considered as observation data and climatology is defined as the average from 1979 to 2002. Cross-validation is applied to the verification process. The single models successfully simulated the northern hemispheric winter climate features; however, the seasonal predictability of each model was low in the midto high-latitudes. The interannual variability of mean square error (MSE) from multi model ensemble is found to be dependent on MSE of single models and the improvement of skill score from multi model ensembles (regression-improved and superensemble) are primarily attributed by the reduction of conditional bias in the model.

목차

Abstract
1. Introduction
2. Description on Models, Experiment, and Verification Method
3. Hindcast Skill Assessment of Single Models
4. Assessment of multi model ensemble seasonal predictions
5. Multicollinearity in Multi Model Ensemble Prediction
6. Summary and Concluding Remarks
Acknowledgement
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016241107