메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第45卷 第1號
발행연도
2008.1
수록면
25 - 36 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
눈 검출은 눈 동공의 정 중앙의 위치를 찾아내는 작업을 의미하며, 얼굴 인식 및 관련된 응용 분야 등에서 필요한 작업이다. 현재까지 보고된 대부분의 눈 검출 방법의 경우 성공적인 적용을 위해서는 여전히 정확도 및 검출 속도의 개선을 필요로 한다. 본 논문에서는 큰 계산량의 부담이 없는 다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출 방법을 제안한다. 가버특징 벡터를 사용한 눈 검출은 EBGM 등에서 이미 이용되고 있다. 그런데, EBGM 등에서 사용한 눈 검출 방법은 초기값에 민감하고 조명, 자세 등에 강인하지 못하여, 만족할 만한 검출률을 얻기 위해서는 광범위한 탐색 범위가 필요하다. 이는 계산량의 상당한 증가를 초래한다. 본 논문에서 제안한 눈 검출 방법은 다중 해상도 접근 방법을 활용한다. 먼저, 원래 해상도 얼굴 이미지를 다운샘플링하여 얻은 저해상도 얼굴 이미지에서, 초기 추정 눈 위치에서의 가버 특징 벡터와 해당 해상도의 눈에 대한 가버 특징 벡터 모델과의 가버젯 유사도를 이용하여 눈 위치를 검출한다. 이후 검출된 눈 위치를 업스케일링하여 상위해상도의 얼굴 이미지에서의 눈 위치 초기값으로 취하고 앞 단계에서처럼 가버젯 유사도를 이용하여 눈을 검출한다. 이 과정을 반복하여 최종적으로 원래 해상도 얼굴 이미지에서의 눈 위치를 확정한다. 또한, 본 논문에서는 제안된 다중 해상도 접근방법이 조명에 대해서도 보다 강인하도록 하는 데 효과적인 조명 정규화 기법을 제안하고, 이를 다중 해상도 접근 방법의 전 처리 단계에 추가적으로 적용함으로써 눈 검출 성공률을 더욱 개선하였다. 실험을 통해, 본 논문에서 제안한 다중스케일 가버 특징 벡터 기반 눈 검출 방법은 계산량을 크게 증가 시키지 않으면서 기존 연구들에서 보고된 다른 눈 검출 방법에 비해 정확도가 개선된 검출 방법이며, 자세 및 조명 변화에 대해서도 강인하다는 것을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 다중 해상도 가버 특징 벡터 모델 기반 눈 검출
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016272892