메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국산업응용수학회 한국산업응용수학회 학술대회 논문집 한국산업응용수학회 2005년 춘계학술대회
발행연도
2005.5
수록면
15 - 16 (2page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the field of scalar hyperbolic equations, we take into consideration the idea of building numerical schemes using two grids: the first one to represent the solution and the second one to collocate the equation. This approach is based on the experience already gained in the approximation of boundary-value elliptic-type problems (see for instance [1]), as well as in the field of functional or integral-type equations (see [2]).
In order to show that the same approach can be used with success also for time-dependent problems, we study finite-difference approximations of first-order scalar hyperbolic equation in one space dimension. The representation grid is the usual uniform grid in the space-time plane. The discrete values of the solution are then assumed to be computed on a six-points stencil of such a representation grid. The approximating equations are deduced after collocation at a new point inside the stencil. It turns out that the possibility of varying the collocation point, gives a lot of freedom in the construction of the approximation method. First of all, this allows for the rediscovery of old methods and their critical analysis from a different point of view. Secondly, we have now the chance, by establishing a suitable relation between the representation and the collocation grids, to introduce new methods.
Since the position of the collocation point (two degrees of freedom) characterizes the approximation scheme, we can come out with a wide family ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014677879