메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제9호
발행연도
2001.12
수록면
817 - 821 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 분류 문제의 훈련 패턴으로부터 형성되는 커널 공간의 저밀도 표현을 가능하게 하는 커널 방법에 대한 새로운 학습방법론을 제안한다. 선형 판별 함수에 대한 기존의 학습법 중에서 이완 절차가 SVM(Support Vector Machine) 분류기와 동등하게 선형분리 가능 패턴분류 문제의 최대 마진 분리 초평면을 얻을 수 있다. 기존의 이완 절차는 지원 벡터에 대한 필요 조건을 만족한다. 본 논문에서는 학습 중 지원 벡터를 확인하기 위한 충분 조건을 제시한다. 순차적 학습을 위하여 기존의 SVM을 확장하고 커널 판별함수를 정의한 후에 체계적인 학습방법을 제시한다. 실험 결과는 새 방법이 기존의 방법과 동등하거나 우수한 분류 성능을 갖고있음을 보여준다.

목차

요약
Abstract
1. 서론
2. 배경 연구
3. Relaxation에 의한 SV 패턴학습법
4. 커널 판별 함수와 저밀도 표현 학습법
5. 실험 결과
6. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804630