메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SD 電子工學會論文誌 SD編 第45卷 第6號
발행연도
2008.6
수록면
49 - 59 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 SIFT(Scale Invariant Feature Transform) 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 고정 소수점 모델로 설계 및 분석하고 그에 근거한 하드웨어 구조를 제안한다. SIFT 알고리즘은 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 구역에서 얻어진 특징점 주위 픽셀의 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 알고리즘에 대한 최적의 하드웨어 구현을 위해 특징점 위치(Keypoint Localization)와 방향(Orient Assignment)에 대한 정확도, 오차율을 사용하여 고정 소수점 모델에서 각 중요 변수들의 비트 크기를 결정 한다. 얻어진 고정 소수점 모델은 원래의 부동소수점 모델과 비교했을 때 정확도 93.57%, 오차율 2.72%의 결과를 보이며, 고정 소수점 모델은 부동 소수점 모델과 비교하여 제거된 특징점의 대부분이 두 영상에서 추출된 특징점 끼리의 매칭과정에서 불필요한 객체의 모서리 영역에 몰려있음을 확인 했다. 고정 소수점 모델링 결과 ARM 400㎒ 환경에서 약 3시간, Pentium Core2Duo 2.13㎓ 환경에서 약 15초의 연산시간을 갖는 부동 소수점 모델이 동일한 환경에서 약 1시간과 10초의 연산시간을 가지며, 최적화된 고정 소수점 모델을 하드웨어로 구현 시 10~15 frame/sec의 성능을 보일 것으로 예상한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. SIFT 특징점 위치결정 알고리즘
Ⅲ. 고정 소수점 모델 구현 및 성능 분석
Ⅳ. 하드웨어 설계 구조
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014810090