메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제13권 제2호
발행연도
2003.4
수록면
186 - 191 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
이동로봇(Mobile Robot)의 자율주행 기능에는 추종, 접근, 충돌회피, 경고 등의 여러 기능이 있다. 이 기능들을 하나의 Neural Network로 구성하고 학습하는 것은 쉬운 일이 아니다. 이동로봇의 자율주행 기능들을 각각의 Module로 구성하고 상황에 맞게 학습된 Module의 출력 값으로 이동로봇을 제어하면 단일 신경망의 단점을 보안할 수 있을 것이다. 이동로봇은 인간의 감각을 대신할 수 있는 다중 초음파 센서와 USB 카메라를 장착하고 있으며, 이곳에서 측정된 환경정보 데이터들은 Modular Neural Network(MNN)을 통해 학습을 한다. Expert Network(EN)의 활성화 함수를 최적결합으로 MNN을 구성하였고, 그 구조는 학습시간과 오차를 개선할 수 있을 것으로 본다. Gating Network(GN)는 MNN의 출력값인 이동로봇의 진행 방향과 속도를 스위칭 함으로써 제어하는 역할을 한다.
본 논문에서는 Modular Neural Network(MNN) 내의 Expert Network(EN)을 최적설계 하였고, 제안한 MNN의 검증을 위해 실시간으로 반복하여 이동로봇에 구현하였다. 그 실험의 결과값은 로봇을 상황에 맞게 운행, 제어하였고, 만족할 만한 성과를 얻을 수 있었다.

목차

요약
Abstract
1. 서론
2. Modular Neural Network
3. MultiLayer Neural Network 구조
4. Mobile Robot System
5. 시뮬레이션 / 구현
6. 결론 및 향후과제
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014818116