메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1,2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to 27℃. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

목차

Abstract
1. Introduction
2. Experimental apparatus
3. Results and discussion
4. Conclusions
Acknowledgement
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-553-014843435