메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제6호
발행연도
2004.10
수록면
745 - 751 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
순수한 부울 검색 시스템은 문서와 질의 사이의 유사 도를 나타내는 문서 값을 계산할 수 없기 때문에 검색된 문서들을 질의를 만족하는 정보에 따라 정렬할 수 없다. 부울 검색 시스템의 이러한 단점을 보완하는 방법으로 MMM 모델, Paice 모델, P-norm 모델이 개발되었다. 이러한 방법들은 부울 연산자를 유연하게 연산하는 공통된 특성을 지니고 있다. 본 논문에서는 높은 검색 효과를 제공하는 지역적 문맥 분석 피드백(Local Context Analysis Feedback)을 이용한 웹 정보 검색모델을 이용한다. 지역적 문맥 분석 피드백 모델의 연산 특성이 MMM(Max and Min Model), Paice, P-norm 모델보다 우수함을 설명하고, 또한 성능 비교를 통하여 이를 입증한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 지역적 문맥 분석 피드백 모델
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014868141