메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제1호
발행연도
2004.2
수록면
52 - 56 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주식시장에서 KOSPI200지수의 상승 또는 하락으로 분류 및 예측하는 정보는 선물 및 옵션시장에서 포토폴리오를 설계할때 의사결정을 위해 중요한 기준이 된다. 경제지표인 시계열 패턴들의 향후 추세는 가장 최근의 경제패턴에 매우 종속적이기 때문에 최근의 패턴들을 가장 우선적으로 학습해야 할 필요가 있다. 본 논문에서는 시계열분석, 신경회로망, 그리고 다양한 분야에서 각광을 받고 있는 SVM(Support Vector Machine)과 Fuzzy SVM 모형의 분류 및 예측성능을 비교하였다. 특히 학습 DB에 따라 시계열성 속성을 갖는 퍼지소속함수에 가장 적합한 차원을 제시함으로서 Fuzzy SVM이 우수함을 입증하였다.

목차

요약
Abstract
1. 서론
2. 기존 연구
3. Fuzzy Support Vector Machine
4. 실험
5. 결론
6. 향후 연구 계획
References
저자소개

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014902519