메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form P(X) = A?X<SUP>m</SUP>+A₁X<SUP>m-1</SUP>+…+A<SUB>m</SUB>, where A?, A₁,…, A<SUB>m</SUB> and X are n × n complex matrices. Newton's method was introduced a useful tool for solving the equation P(X) = 0. Here, we suggest an improved approach to solve each Newton step and consider how to incorporate line searches into Newton's method for solving the matrix polynomial. Finally, we give some numerical experiment to show that line searches reduce the number of iterations for convergence.

목차

ABSTRACT
1. INTRODUCTION
2. THEORY
3. NEWTON‘S METHOD
4. NUMERICAL EXPERIMENTS AND CONCLUSIONS
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-015004563