메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 RBF 네트워크를 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평ㆍ수직 에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ARTI 알고리즘을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다.
제안된 방법의 성능을 확인하기 위하여 트루 컬러 차량 영상 155개와 그레이 컬러 차량 영상 100개를 대상으로 실험한 결과, 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법. RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출률이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들 보다 우수한 성능이 있음을 확인하였다.

목차

요약
1. 서론
2. 차량 번호판 인식 시스템
3. 실험 및 결과
4. 결론 및 향후과제
5. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015007788