메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
점진적 개념 학습 알고리즘인 COBWEB은 클래스 정보가 주어지지 않은 사례들(instances)을 분류하기 위하여 사례의 속성과 값에 근거하여 학습하며 각 노드가 유사한 사례들의 집합인 클래스에 해당하는 분류 트리를 생성하는 알고리즘이다. 유사한 사례들을 같은 클래스로 분류하기 위한 기준으로 category utility가 사용되며 이는 클래스 내부의 유사도와 클래스 간의 차이점을 최대화 하는 방향으로 클래스를 분류한다. 기존의 COBWEB에 사용되는 category utility는 클래스 사이즈와 예측 정확성 사이의 tradeoff 관계로 볼 수 있으며, 이로 인하여 예측 정확성은 약간 감소하나 클래스 사이즈가 커지는 방향으로 학습이 진행 될 수 있는 편향성(bias)를 가지고 있다. 이는 분류 트리에 불필요한 클래스 노드들(spurious nodes)을 생성하게 하여 학습 결과인 클래스 개념을 이해하는데 어렵게 한다. 본 논문에서는 클래스와 그에 속하는 사례들의 속성-값 분포를 고려하여 클래스와 속성의 연관성에 비례한 가충치를 더한 변형된 category utility를 제안하고, dataset에 대한 실험을 통하여 제안된 category utility가 기존의 큰 클래스 사이즈를 선호하는 bias를 완화 시킴을 보이고자한다.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
감사의 글
Ⅳ. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015002309