메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (12)

초록· 키워드

오류제보하기
본 논문에서는 퍼지 뉴럴네트워크의 새로운 구조인 Fuzzy Set-based Polynomial Neural Networks(FSPNN)을 소개한다. 제안된 모델은 일반적인 최적화 방법과 정보 입자를 이용하여 네트워크를 설계한다. 최종 구조는 Fuzzy Set-based Polynomial Neuron(FSPN)을 기반으로 설계한 FPNN과 동일하다. 첫째로 FSPNs의 종합적인 설계방법(유전자 알고리즘을 이용한 최적 구조 탐색)에 대해 소개한다. FSPNN에 관계되는 입력변수의 개수, 후반부 다항식의 차수, 멤버쉽 합수의 수 그리고 입력변수 개수에 따른 입력변수를 유전자 알고리즘을 통하여 동조한다. 두 번째로, 입력 변수의 개별적인 퍼지 규칙 형성과 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 HCM 클러스터링을 통한 Information Granules로 정의한다. 또한 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다.
이 네트워크의 성능은 기존에 퍼지 또는 뉴로퍼지 모델링에서 실험된 모델링 표준치를 이용하여 평가한다.

목차

요약
1. 서론
2. 데이터 입자
3. Fuzzy Set Polynomial Neuron
4. IG-based gFSPNN 설계
5. 실험 데이터를 통한 결과 고찰
6. 결론
감사의 글
7. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015026434