메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
병원의 각종 측정 장비에서 출력되는 결과지나 의사들이 작성한 기록지를 스캔하여 이미지형태로 저장하는 이미징 시스템 개발이 크게 요구되고 있다. 본 논문에서는 신경망과 그래픽 기법을 사용하여 대학병원 심전도실에서 사용되는 여섯 종류의 심전도 출력지를 이미지 형태로 저장하고 검색하는 이미징 시스템의 설계와 구현에 대해 논하였다. 구현된 시스템은 여섯 종류의 심전도 출력지를 분류하고, 분류된 각 출력지에 인쇄된 중요한 측정 데이터를 인식하여 데이터베이스에 저장한다. 심전도 출력지의 분류는 각 샘플 서식들의 평균 히스토그램을 구한 다음 새로운 출력지가 들어올 때 평균 히스토그램과의 거리가 가장 가까운 출력지로 분류하는 nearest-neighbor 방법을 사용하였다. 출력지에 인쇄된 데이터의 인식을 위해 먼저 XML로 작성한 출력지별 추출 정보를 기반으로 스캔한 이미지의 영역 분할 작업을 수행한다. 분할된 영역들은 신경망을 이용해 문자 인식을 하고 인식된 문자들이 데이터베이스의 해당 속성값으로 저장된다. 스캔한 출력지는 의사들이 주석을 붙이거나 조건 검색을 위해 이미지 형태로 저장된다.

목차

요약
1. 서론
2. 심전도(ECG)
3. 데이터 추출
4. 심전도관리자
5. 결론 및 향후 과제
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015036018