메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 한국어 동사의 개념적 클러스터링 방법을 제안한다. 사용되는 기법은 독립성분분석, Box-Cox 변환, 상관분석 등이다. 독립성분분석은 잠재적인 성분을 통계적 독립(statistical independence)에 기반하여 추출하는 분석 방법이다. 그런데, 독립성분분석에서는 mixture(동사)의 분포는 정규 분포(가우시안 분포)에 따른다고 가정한다. 따라서, 동사의 분포를 보다 정규 분포화 할 필요가 있다. 이에 본 논문에서는 Box-Cox 변환을 이용하여 동사의 분포를 정규 분포에 근사한다. 또한, 독립성분분석에서는 추출할 적당한 성분의 개수를 결정할 수가 없다. 이에 본 논문에서는 주성분분석의 결과로 획득되는 고유치의 누적 기여율을 이용하여 독립성분의 수를 결정한다. 그리고, 추출된 독립성분 벡터와 동사 벡터간의 상관계수에 이용하여 독립성분(개념)에 밀접하게 관련있는 동사들을 하나의 클러스터로 구성한다. 한국어 동사를 대상으로 클러스터링한 결과, Box-Cox 변환을 적용한 경우가 더 좋은 성능을 보였다.

목차

요약
1. 서론
2. 독립성분분석
3. Box-Cox 변환
4. 동사의 개념 클러스터링
5. 실험 및 결과
6. 결론 및 향후 연구
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0