메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보과학회 데이터베이스 소사이어티 데이타베이스연구 데이타베이스 연구 제22권 제3호
발행연도
2006.12
수록면
1 - 13 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 센서 네트워크의 발달로 실세계의 많은 데이터가 시간 속성을 갖고 실시간으로 수집되고 있다. 기존의 시계열 데이터 예측 기법은 긴 주기를 갖는 과거 데이터를 통해 미래를 예측하거나 모델 갱신 없이 예측을 수행하였다. 그러나 스트림 데이터는 매우 빠르게 수집이 되고 시간이 지남에 따라 데이터의 특성이 변경될 수 있으므로 기존의 시계열 예측 기법을 적용하는 것은 적절하지 않다. 따라서 이 논문에서는 슬라이딩 윈도우와 점진적인 회귀분석을 이용한 스트림 데이터 예측 기법을 제안한다. 이 기법은 스트림데이터를 다중 회귀 모델에 입력하기 위해 차원 분열을 통해 여러 개의 속성으로 분열( Fractal )하고, 변화되는 데이터의 분포를 반영하기 위해 슬라이딩 윈도우 기법을 사용하여 점진적으로 회귀 모델을 갱신한다. 이전 데이터의 유지 없이 최소 정보를 갖는 행렬을 통해 모델을 갱신하므로 낮은 공간 복잡도를 갖는다. 제안된 기법의 타당성은 RME(Relative Mean Error)와 RMSE(Root Mean Square Error)를 이용하여 측정하였다. 1시점 예측 정확도 측정 실험 결과 제안 기법인 IMQR(Incremental Multiple Quadratic Regression) 기법이 DES(Double Exponential Smoothing), SVR(Support Vector Regression), MLR(Multiple Linear Regression), MQR(Multiple Quadratic Regression) 기법에 비해 R M E가 평균 5.6%, RMSE가 평균 0.067 정도 우수하였다.

목차

요약
ABSTRACT
1. 서론
2. 관련연구
3. 다중 회귀분석
4. 스트림 데이터 예측 기법
5. 실험 및 평가
6. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0