메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Magnetorheological (MR) fluid is used as the working medium in MR finishing. The viscosity of the MR fluid, which determines the shear acting on the workpiece surface stress, can be controlled by the intensity of the applied external magnetic field, and is thus an important design parameter in the finishing process. Most previous studies have used a shear stress value obtained experimentally under a limited set of conditions. Although a recent theoretical model that predicts the shear stress in an external vertical magnetic field has been developed, it treats the energy variation with respect to the strain and the intensity of the magnetic field only among the adjoining particles in a chain. Because that model assumes no multiparticle interactions, it is not well suited to a case in which the magnetic field is more than one dimension such as in MR finishing. In this study, a new three-dimensional model is proposed by expanding the one-dimensional model and considering multi particle interactions. The proposed model assumes that each particle is surrounded by the 26 neighboring particles, and the total internet! energy is estimated by calculating the magnetic dipole interactions among the particles. Therefore, the proposed model considers not only the particle-to-particle energy variations, but also the chain-to-chain energy variations. The behavior of MR fluid is evaluated using the proposed model in a two-dimensional skewed magnetic field.

목차

1. Introduction
2. MR finishing process
3. Particle-based models of MR fluid
4. Proposed model considering multiparticle interactions
5. Discussion
6. Conclusion
ACKNOWLEDGMENT
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0