메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제18권 제6(A)호
발행연도
2008.12
수록면
115 - 127 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Native API(Application Programming Interfaces)는 관리자 권한에서 수행되는 system call의 일종으로 관리자 권한을 획득하여 공격하는 다양한 종류의 악성코드를 탐지하는데 사용된다. 이에 따라 Native API의 특징을 기반으로한 탐지방법들이 제안되고 있으며 다수의 탐지방법이 교사학습(supervised learning) 방법의 기계학습(machine learning)을 사용하고 있다. 하지만 Anti-Virus 업체의 분류기준은 Native API의 특징점을 반영하지 않았기 때문에 교사학습을 이용한 탐지에 적합한 학습집합을 제공하지 못한다. 따라서 Native API를 이용한 탐지에 적합한 분류기준에 대한 연구가 필요하다. 본 논문에서는 정량적으로 악성코드를 분류하기 위해 Native API를 기준으로 악성코드를 퍼지 군집화하여 재그룹화하는 방법을 제시한다. 제시하는 재그룹화 방법의 적합성은 기계학습을 이용한 탐지성능의 차이를 기존 분류방법을 결과와 비교하여 검증한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 방법
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌
〈著者紹介〉

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0