메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 학습이 가능한 특정화자의 발화음성이 있는 경우, 잡음과 반향이 있는 실 환경에서의 스테레오 마이크로폰을 이용한 특정화자 음성복원 알고리즘을 제안한다. 이를 위해 반향이 있는 환경에서 음원들을 분리하는 다중경로 암묵음원분리(convolutive blind source separation, CBSS)와 이의 후처리 방법을 결합함으로써, 잡음이 섞인 다중경로 신호로부터 잡음과 반향을 제거하고 특정화자의 음성만을 복원하는 시스템을 제시한다. 즉, 비음수 행렬분해(non-negative matrix factorization, NMF) 방법을 이용하여 특정화자의 학습음성으로부터 주파수 특성을 보존하는 기저벡터들을 학습하고, 이 기저벡터들에 기반 한 두 단계의 후처리 기법들을 제안한다. 먼저 본 시스템의 중간단계인 CBSS가 다중경로 신호를 입력받아 독립음원들을(두 채널) 출력하고, 이 두 채널 중 특정화자의 음성에 보다 가까운 채널을 자동적으로 선택한다(채널선택 단계). 이후 앞서 선택된 채널의 신호에 남아있는 잡음과 다른 방해음원(interference source)을 제거하여 특정화자의 음성만을 복원, 최종적으로 잡음과 반향이 제거된 특정화자의 음성을 복원한다(복원 단계). 이 두 후처리 단계 모두 특정화자 음성으로부터 학습한 기저벡터들을 이용하여 동작하므로 특정화자의 음성이 가지는 고유의 주파수 특성 정보를 효율적으로 음성복원에 이용 할 수 있다. 이로써 본 논문은 CBSS에 음원의 사전정보를 결합하는 방법을 제시하고 기존의 CBSS의 분리 결과를 향상시키는 동시에 특정화자만의 음성을 복원하는 시스템을 제안한다. 실험을 통하여 본 제안 방법이 잡음과 반향 환경에서 특정화자의 음성을 성공적으로 복원함을 확인할 수 있다.

목차

요약
Abstract
1. 서론
2. 문제 공식화
3. 주파수 특성 기저벡터 학습
4. 다중경로 암묵음원분리(Blind Source Separation of Convolutive Mixture)
5. 학습된 기저벡터를 이용한 CBSS의 후처리기법들
6. 실험 결과
7. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0