메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the optimization of an aircraft wing design was conducted using multidisciplinary design optimization (MDO), which integrates aerodynamic and structural analysis in considering nonlinear structural behavior. Automation is an absolute necessity to make the MDO framework practical for actual engineering optimization problems. The objective of this research was to develop a fully automated MDO framework in which the entire process is automated through a parametric-modeling approach. The computational fluid dynamics (CFD) grid was generated automatically from parametric modeling using CATIA and Gridgen, followed by automatic flow analysis using FLUENT. The computational structure mechanics (CSM) grid was generated automatically by the parametric methods of CATIA and MSC/Patran. The structure was analyzed by ABAQUS considering the deformation nonlinearity, and the aerodynamic load was transferred from the CFD grid to the CSM grid using the volume spline method. The response Surface method was applied for optimization, which helped achieve the global optimum. The developed MDO framework was applied to a wing optimization problem in which the objective was wing weight and the constraints were the lift-drag ratio, wing deflection, and structural stress level. The aspect ratio, taper ratio, quarter-chord sweep angle, skin thickness, and spar flange area were the design variables. The optimization design result demonstrated a successful application of the fully automatic MDO framework.

목차

1. Introduction
2. MDO Framework
3. Wing Optimization Design Using the MDO Framework
4. Conclusions
ACKNOWLEDGMENT
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0