메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 의사결정나무와 Conditional Random Fields(CRFs)를 이용하여 한국어 어절 구문태그를 예측하는 시스템에 대해서 설명한다. 기계학습에서 자질의 선택은 작성자의 직관에 의해서 주로 이루어지는데 이는 작성자의 지식에 의존한다. 본 연구에서는 의사결정나무를 사용하여 보다 체계적으로 조합이 이루어지도록 하였다. 또한 오류 분석을 통하여 최적의 자질이 무엇인지를 파악하여 최고의 성능을 보이도록 하였다. 실험을 통하여 본 논문에서 제안한 방법이 성능향상에 도움이 된다는 것을 확인할 수 있어 앞으로 구문 분석에 많은 도움이 될 것이라고 확신한다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안 시스템
4. 실험 및 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018380457