메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제19권 제2호
발행연도
2009.4
수록면
206 - 211 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)기반의 자동 특징 추출기법을 사용하여 1일 후의 주식 예측을 하는 방안을 제안하고 있다. 비중복면적 분산측정법에 의해 중요도가 가장 낮은 특징입력을 자동적으로 하나씩 제거하면서 최소의 특징입력을 선택하였다. 특징입력으로써 CPP<SUB>n,m</SUB> (Current Price Position of the day n)과 최근 32일간의 CPP<SUB>n,m</SUB>을 웨이블릿 변환한 38개의 계수들 중 비중복면적 분산측정법에 의해서 자동적으로 추출된 2개의 계수가 사용되었다. 제안된 방법으로 1989년부터 1998년까지의 실험군을 사용한 결과로써 60.93%의 예측율을 나타내었다.

목차

요약
Abstract
1. 서론
2. KOSPI 예측 모델의 개요
3. 특징 선택(비중복적 분산 측정법)
4. 실험 결과(Experimental Results)
5. 결론
참고문헌
저자소개

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-018275560