메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한토목학회 대한토목학회논문집 A 大韓土木學會論文集 제26권 제6 A호
발행연도
2006.11
수록면
1,001 - 1,011 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
재료인수, 기하인수 또는 작용하중 등에 불확실성을 가지는 구조에 대한 추계론적 해석의 정확해는, 일반적인 관점에서, 불확실성을 표현하는 추계장의 수치생성과 이에 대한 몬테카를로 해석을 통하여 얻을 수 있다. 그러나 불확실 인수의 공간적 분포를 나타내는 추계장은 그 특성을 표현해주는 두 가지의 함수를 동시에 만족시켜야 한다. 하니는 확률변수의 공간적 분포 상황을 표현해주는 스펙트럼밀도함수이며, 다른 하나는 통계적 특성을 나타내는 확률밀도함수이다. 일반적으로 이들 두 함수를 동시에 만족시키는 추계장의 정확한 수치생성은 여러 이유에서 어려운 일로 여겨지고 있다. 그러나 상관관계거리가 무한대인 확률변수상태의 경우 추계장은 상수추계장이 되며, 이 경우 스펙트럼밀도함수에 의하여 부과되는 제한조건은 사라지게 되어, 단순히 확률밀도함수에 대한 조건만이 남게 된다. 이 경우, 구조인수의 불확실성에 의한 구조응답은 확률밀도함수만을 고려하여 얻을 수 있게 된다. 이렇게 산정되는 응답변화도는 기존의 급수전개 및 섭동법 등의 수치해법은 물론 몬테카를로 해석에서도 얻을 수 없었던 정확해에 대한 준이론해를 제공해 줄 수 있다.

목차

Abstract
요지
1. 서론
2. 추계장의 특성과 양 극한상태
3. 확률밀도함수와 응답변화도
4. 예제 해석
5. 결론
감사의 글
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-531-018580004