메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김광섭 (강원대학교) 하진영 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제36권 제9호
발행연도
2009.9
수록면
683 - 690 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
은닉 마코프 모델(Hidden Markov Model: HMM)에 기반을 둔 온라인 한자 인식에서 클래스의 수가 대용량일 경우에는 인식에 걸리는 시간 증가가 좋은 인식 시스템을 구현하는데 있어서의 걸림돌이 된다. 본 논문에서는 이러한 인식 속도 문제를 해결하고자 HMM을 클러스터링하여 인식 속도를 개선하는 방법과 이에 적합한 효율적인 HMM 간의 거리계산법을 제안한다. 유니코드 한?중?일 통합한자로 정의된 총 20,902개의 한자에 대한 온라인 한자 인식 시스템을 구축하는 실험에서 약 2배 정도로 인식속도가 향상됨을 확인할 수 있었고 클러스터링을 하지 않았을 때보다 0.9%의 인식률만 하락한 95.37%의 10순위 인식률을 달성했다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. HMM 간의 거리계산법
4. 클러스터링과 인식과정
5. 실험 및 결과분석
6. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018832567